Midplane Neutral Density Profiles in NSTX

D. P. Stotler F. Scotti, R. E. Bell, A. Diallo, B. P. LeBlanc, M. Podesta, A. L. Roquemore, P. W. Ross

PPPL Theory Research & Review Seminar July 24, 2015

Preview

- Describe a simulation based method for inferring midplane neutral density profiles from visible camera data.
- Get a range of values for 2010 NSTX discharges: $n_{\rm D}\sim 10^{16}~{\rm m}^{-3},~n_{\rm D_2}\sim 10^{17}~{\rm m}^{-3}.$
- Validation quantifies uncertainties in simulation results ⇒ error bars and pointers for improving model & experiment.
- If you leave / fall asleep:
 - D. P. Stotler et al., *J. Nucl. Mater* **463**, 897 (2015).
 - D. P. Stotler et al., Phys. Plasmas (August 2015), PPPL-5093.

Multiple Needs for Main Chamber Neutral Density Profiles

- For other diagnostics & analyses
 - Neutral beam charge exchange loss power,
 - Interpretation of CHERS data.
- & for study of SOL & pedestal physics,
 - H-mode pedestal formation,
 - Edge plasma turbulence.

[S. Medley, NF (2004)]

Direct Experimental Inversion of Limited Utility

- Visible camera ⇒ line integrated emission rates.
- Abel inversion ⇒ volumetric rate S.
- Balmer-β emission rate:

$$egin{aligned} S_{eta} &= n_{
m D}(1s) \left[rac{n_{
m D}(n=4)}{n_{
m D}(1s)}
ight] A_{4 o 2} \equiv n_{
m D} F(n_e,T_e), \ \Rightarrow n_{
m D} &= S_{eta}/F(n_e,T_e). \end{aligned}$$

- But, S_{β} & F both significant only in narrow radial region,
- DEGAS 2 based "forward" method for inferring $n_D(R)$, $n_{D_2}(R)$ provides more information, smaller uncertainties.

DEGAS 2 Monte Carlo Neutral Transport Code

- Simulate behavior of neutral species in a plasma.
 - Plasma-wall interactions generating neutral atoms & molecules, e.g., recycling.
 - Interactions between those neutral species with plasma ions & electrons as they penetrate.
- Input to DEGAS 2:
 - Geometry: 2-D or 3-D outline of hardware & flux surface aligned mesh for plasma.
 - Plasma density, temperature, flow velocity everywhere.
 - Source of neutrals: recycling, gas puff, recombination,
- Volumetric sources / sinks of plasma mass, momentum, & energy due to those interactions (e.g., for coupling to plasma codes).
- & Synthetic diagnostic data for experimental comparison,
 - Neutral pressure,
 - Light emission,
 - Wall fluxes.

Method Leverages Off Successful Midplane Gas Puff Imaging Simulations

- See: [B. Cao et al., Fusion Sci. Tech. 64, 29 (2013)].
- Relies on nearby n_e(R) & T_e(R) from Thomson scattering,
 - & assuming n_e(R) & T_e(R) constant on flux surface ⇒ know everywhere.
- · Flux surface shapes from EFIT,
 - Thomson profiles mapped via
 R ⇒ not sensitive to separatrix
 location.

Validated DEGAS 2's Description of D₂ Penetration from Far SOL

- D_α radial profiles from D₂ puff matched within estimated uncertainties.
- · & matches absolute magnitude,
 - Camera absolutely calibrated,
 - Know total amount of gas injected
 compare photons recorded / D injected.
 - GPI: $1/89 \pm 34\%$,
 - DEGAS 2: $1/75 \pm 18\%$.
- ⇒ DEGAS 2 provides adequate model for D₂ penetration of NSTX midplane.

Key Data: Passive Light Emission from Edge Neutral Density Diagnostic (ENDD)

- Absolutely calibrated tangential camera,
 - → Radial profile, 1.6 mm resolution.
- 3.7 ms exposure time
 - = 268 frames / second.
 - ⇒ integrates over ELMs.
- 20 cm radial × 9 cm poloidal.
- Has D_{β} filter for shots considered here.
- Complete spatial calibration
 can build DEGAS 2
 synthetic diagnostic.

Set Up DEGAS 2 Simulations Similar to Those Used for GPI

- Geometry & plasma setup procedures derived from those used for GPI [B. Cao et al., Fusion Sci. Tech. 64, 29 (2013)],
- Geometry based on EFIT flux surface contours,
- Plasma profiles from Thomson & CHERS,
 - Use CHERS to estimate n_{D^+}/n_e & T_i/T_e ,
 - $T_i = T_e$ for shots used here.
- Primary differences from GPI:
 - Nature of D₂ source,
 - Synthetic diagnostic for D_{β} ENDD,
 - Baseline runs ignore D_{β} from molecules.

Source Characterization & Analysis Procedure Specific to ENDD

- Actual sources difficult to characterize:
 - Neutral flow from divertor,
 - Main chamber recycling,
 - Or outgassing.
- → Postulate vertically uniform D₂ source coming from vessel walls,
 - Will show results very insensitive to this assumption.
 - Assign arbitrary magnitude: $\Gamma_{\rm D_2} = 10^{20} \; {\rm D_2/(m^2 \; s)}$ at wall.
- Compare synthetic ENDD signal with experimental image:
 - Use horizontal row of simulated ENDD pixels at Z = 9 cm,
 - Overlay with row from calibrated experimental ENDD smoothed over vertical 10 pixels (1.4 cm)
 - ⇒ overall scale factor for simulation.
- Focus here on 2-D / axisymmetric calculations.

ENDD Geometry

 Scintillator Fast Lost Ion Probe [sFLIP, Darrow, RSI (2008)]: used for initial 3-D runs. But, not here.

Emission Profiles Agree Reasonably

- Apply to two NSTX H-mode plasmas:
 - 139412 t = 4 s: $\delta = 0.3$, ELMy,
 - 142214 t = 4 s: $\delta = 0.6$, ELM-free.
- High SOL density, $n_e \sim 10^{18} \text{ m}^{-3} \Rightarrow$ Thomson accurate at all points.
- Take ratios of profile peaks:
 - 139412: ENDD = $2.5 \times DEGAS 2$,
 - 142214: ENDD = 1.6 × DEGAS 2.
- Good match confirms approach to inverting ENDD & adequacy of uniform D₂ source ansatz.
- But, what is "good"?
 - ⇒ that's the point of validation!

Simulated Peak Location Tracks $T_e = 100 \text{ eV}$

• 12 runs from 7 shots.

$R_{\mathrm{ENDD}} - R_{\mathrm{DEGAS2}}$ Ranges from $-1 \rightarrow 4$ cm

• Discrepancy larger for smaller R₁₀₀!

Emissivities Also Correlated with R_{100}

• Physics? Diagnostic problem? Simulation problem?

Each Simulations Yields Neutral Density Profiles at Midplane

- \Rightarrow Ranges of values at vessel wall, R = 1.7 m. Key result!
- But, how uncertain are they???

Estimated Uncertainties from ENDD Itself Are Small

- Absolute calibration of camera: 3%.
- Spatial calibration of camera: 3 mm
- "Blue shifting": 8% magnitude,
 - Negligible effect on peak location.
- Li coatings on mirror?
 - Expect insignificant & not evaluated.

Peak Location Tracks Plasma Profiles ⇒ Assess Associated Uncertainties

- Thomson scattering profiles uncertain due to random & systematic errors, as well as finite sampling volume.
- Do Monte Carlo sampling of these errors ⇒ 100 T_e, n_e profiles for 142214.
- ⇒ 100 runs ⇒ distribution of peak locations, neutral densities.

Yields Distributions of Output Quantities

- Peak location standard deviation: 3 mm.
- Density standard deviations: n_{D_2} : 6.6 × 10¹⁶ m⁻³, n_D : 7.5 × 10¹⁵ m⁻³.
- Also, quantify sensitivity of densities to SOL T_e

Plasma & Separatrix Motion ⇒ 1 cm Uncertainty in Peak Location

- Motion of plasma significant during 4 ms exposure
 ⇒ ENDD is an average.
- But, ~ 4 frames between TS pulses. How to match up?
- 1 cm estimate from motion in 139396, 139432 & others.

Quantify Uncertainties Associated with Source Profile Assumption

- Relative deviations from baseline ENDD are < 18%,
- Density profiles differ by factor of 2 - 3 or less.
- Similar conclusions from runs with sources at bottom boundary.

Molecular Contributions May Be Important

$$e + D_2 \rightarrow e + D(1s) + D^*(n = 4),$$

 $e + D_2^+ \rightarrow e + D^+ + D^*(n = 4),$
 $e + D_2^+ \rightarrow D(1s) + D^*(n = 4).$

- In GPI: D_2 $D_{\alpha} \sim 40\%$ of emission at peak. Here?
- Problem: D_β rates not as well tested as D_α
 ⇒ only an estimate.
- Contributes 35 → 50% of total emission!

⇒ can shift emission peak!

Active at lower T_e than D emission

Effect of Charge Exchange Surprisingly Small!

- Remove CX from reaction list: < 19% difference in ENDD profile,
 - D, D₂ densities at wall drop 17, 13%.
- Even though $\langle \sigma v \rangle_{\rm CX} > \langle \sigma v \rangle_{\rm ion}$ over most of volume.
- Dominant process is instead D creation from D₂.
- CX is relevant for R < R_{DEGAS2}.

Summary

- Described method for inferring density profiles.
- Simulated ENDD profile peaks differ from measured by ≤ 4 cm,
 - Uncertainty due to plasma motion: 1 cm,
 - − From preliminary D_2 D_β emission model: \leq 2 cm.
- Factors preventing more complete resolution:
 - Plasma parameters in SOL,
 - Plasma motion & synchronization,
 - D_2 D_β model,
 - Unaccounted for camera calibration issues.
- Nonetheless, deviations small compared with problem scale ⇒ can use results to get approximate densities.
- $\Rightarrow n_D = 1 \text{ to } 7 \times 10^{16}, n_{D_2} = 2 \text{ to } 9 \times 10^{17}.$

Can We Compare Vessel Densities with Micro-Ion Gauge Data?

- Survey C-mid, E-mid, IG 110 pressures in 17 shots,
 - Averaged over 0.1 or 0.2 s interval,
 - IG 110 shifted 0.18 s.

- No obvious correlation between them!
- Each is compromised:
 - C-mid very noisy (low end of operating range?),
 - E-mid direct view of plasma
 affected by ELMs,
 - IG 110 slow to respond.
- Can only get an upper bound or range of vessel densities.
- Similarly, see no correlations with peak ENDD emissivity.